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Abstract 

In this paper, the adjacency and incidence matrices to determine the topological structure of a 

mechanism upto structural isomorphism are studied and found that these methodssatisfy the 

uniqueness and de-codability conditions but are computationally inefficient. The other methods 

of identification of structural isomorphisms including the characteristic polynomials, the MAX 

code, and the degree code, are also presented. The paper is extremely useful for P.G students, 

research scholar and designer of mechanisms at the conceptual stage of design. 
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1. Introduction 

Structural analysis means the study of the connection among the members of a mechanism 

kinematic chains and its mobility. Mainly, it is related with the fundamental relationships among 

the dof, number of links, number and the type of joints used in a mechanism. The structural 

analysis does not deal with the physical dimensions of the links. The structural analysis only 

deals with the general functional characteristics of a mechanism. Mostly, graph theory is used as 

a helping tool in the study of the kinematic structure of mechanisms. The on hand study focused 

only on mechanisms whose corresponding graphs are planar and contain no articulation points or 

bridges. A graph having a bridge means that the mechanism is a combination of two mechanisms 

connected in series with a common link but no common joint, or with a common joint but no 

common link. Such mechanisms are considered as two separate mechanisms. The topological 

structure of a mechanism kinematic chain is represented by a graph.  

An important step in structural synthesis of kinematic chains and mechanisms is the 

identification of isomorphic structures. Undetected isomorphic structures lead to duplicate 

solutions, while falsely identified isomorphisms reduce the number of feasible solutions for new 

designs. Several methods of identification have been proposed.Some are based on visual 

approaches while others are based on heuristic approaches. Each method has its own advantages 

and disadvantages [1-23].Both the adjacency and incidence matrices determine the topological 

structure of a mechanism up to structural isomorphism. They satisfy the uniqueness and 

decodability conditions. However, they are computationally inefficient. For this reason, in this 

paper, other methods of identification have been proposed.  

9. Structural Isomorphism 

Two kinematic chains or mechanisms are said to be isomorphic if they share thesame topological 

structure. In terms of graphs, there exists a one-to-one correspondencebetween their vertices and 

edges that preserve the incidence. Mathematically,structural isomorphisms can be identified by 

their adjacency or incidence matrices.But, the form of an adjacency matrix is dependent on the 

labeling of links in akinematic chain. 
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The graph in Figure 11 is obtained from a relabeling of thevertices of the graph in Figure 10. As 

a result, the adjacency matrix for figure 10 is given by equation (4) while the adjacency matrix 

for Figure 11is represented by eq.(5)  . 
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Although the graphs shown in Figures 10 and Figures 11 represent the same gear traingiven in 

Figure 12,their adjacency matrices do not assume the same form. The difference comes from 

thelabeling of the links. In fact, the two adjacency matrices, Equations (4) and (5),are related by 

a permutation of the rows and the corresponding columns. 

If Sis a column matrix whose elements represent the labeling of the links of akinematic chain and 

S∗be another column matrix whose elements correspond to arelabeling of the links of the same 

kinematic chain. Then there exists a permutationmatrix, P, such that 

S∗ = PS                    --------------------------------------(6) 

Here ,A∗is related to A by a congruence transformation, 

A∗ = P
T
 AP   --------------------------------------------(7) 

WhereP
T
denotes the transpose of P. Theoretically, the permutation matrix P can bederived by 

reordering the columns of an identity matrix. It has a positive or negativeunit determinant and the 

transpose is equal to its inverse [17]. 

For example, if the column matrix for the graphs shown in Figure 10 is given by eq. (8) then the 

column matrix for the graph shown in Figure 11 will be represented by eq. (9). Therefore, the 

permutation matrix is given by eq. (10). 
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clearly, Equations (8), (9), and (10) satisfy Equation (6). SubstitutingEquations (4) and (10) into 

Equation (7) yields 

 

Equations (6) and (7) constitute the definition of structural isomorphism. Inotherwords, two 

kinematic structures are said to be isomorphic if there exists a one-toonecorrespondence between 

the links of the two kinematic chains, Equation (6),and when the links are consistently 

renumbered, the adjacency matrices of the twokinematic chains become identical, Equation (7). 

10. Permutation Group and Group of Automorphisms 

Here the concept of a permutation groupof a graph is given.Automorphicgraphs are useful for 

elimination of isomorphic graphs at the outset. 

Let  there is a set of elements: a, b, c, d, e, and f . These elements may representthe vertices or 

edges of a graph, or the links or joints of a kinematic chain. Letthese elements be arranged in a 

reference sequence, say (a, b, c, d, e, f ). We callan alternate sequence (b, c, a, d, f, e) a 

permutation of (a, b, c, d, e, f ), in whicha → b (element a is mapped into b), b → c, c → a, d → 

d, e → f , and f → e.The reference sequence, (a, b, c, d, e, f ), is called the identity permutation. 

In a permutation, some elements may map into other elements, whereas others maymap into 

themselves. A mapping of the type a → b → c → a, denoted by (abc),is said to form a cycle. We 

define the length of a cycle by the number of elements inthat cycle. In particular, a cycle of 

length 1 maps an element into itself; that is, (d)means that d → d. 
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A permutation is said to be represented in cycles if each element occurs exactlyonce and the 

mapping of the elements is represented by the cycles. For example,the mapping of (a, b, c, d, e, f 

)into (b, c, a, d, f, e) has a cyclic representation of(abc)(d)(ef ), where the lengths of the 3 cycles 

are 3, 1, and 2, respectively. Inparticular, the identity permutation is denoted by (a)(b)(c)(d)(e)(f 

). 

 

 

10.1 Group 

A set of n elements, a1, a2, . . . , an, is said to form a group under a given groupoperation, 

denoted by the multiplication symbol ai· aj, if the following axioms aresatisfied [7]: 

1. Closure: If aiand ajare two elements of the group, then ai· ajis also anelement of the group. 

2. Associativity: For all elements of the group, 

(ai· aj)· ak= ai·(aj· ak) 

In this regard, (ai· aj )· akis denoted unambiguously by ai· aj· ak. 

3. Existence of an identity element: There exists an element, aid, such that 

aid· aj= aj· aid= aj 

for all elements of the group. 

4. Existence of inverses: For each element, aj, there exists an inverse element, 

a−1
j, such that 

aj· a
−1

j= aid . 

We note that the group operation is not necessarily commutative; that is aj·ak ≠ak·aj. 

A permutation group is a group whose elements are permutations. The groupoperation for a 

permutation group is defined as follows. Let permutation ajmapelement xpinto xq, whereas 

permutation akmaps element xqinto xr. Then theproduct aj· akmaps xpinto xr. 

10.2 Group of Automorphisms 

Considering labeled graphwhen its vertices are labeled by the integers 1, 2, . . . ,n. In this regard, 

a labeled graph is mapped into another labeled graph when the nintegers are permuted. For some 

permutations, a labeled graph may map into itself.The set of those permutations which map the 

graph into itself form a group called agroup of automorphisms. This group of automorphisms is 

said to be a vertex-inducedgroup [9].Similarly, the edges of a graph may be labeled. We call the 

group of permutationsthat maps the graph into itself an edge-induced group of automorphisms. 
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11. Identification of Structural Isomorphism 

11.1 Identification of Structural Isomorphism by Classification 

Kinematic chains (or graphs) can be classified into families according to the numberof links, 

number of joints, various link assortments, etc. Obviously, kinematic chainsof different families 

cannot be isomorphic with one another. This fact has been usedfor classification and 

identification of the topological structures of kinematic chains. 

 

For example, Buchsbaum and Freudenstein [6] classified the graphs of epicyclicgear trains 

according to their (1) number of vertices, (2) number of edges, and (3)vertex degree listing. Yan 

and Hwang [20, 21] expanded the above classificationmethod to include other attributes such as 

joint assortments, and so on. 

Kinematic chains can also be classified by their corresponding contracted graphs.Obviously, two 

kinematic chains that belong to two different contracted graphs cannotbe isomorphic. For 

example, Figure 13 shows two (11, 14) graphs. Both graphscontain 11 vertices and 14 edges. 

Also , they share the same vertex degreelisting of 6410. Hence, up to this level of classification, 

it seems that they  are isomorphic. But, the contracted graph of the graph shown in Figure 13(a) 

has been shown in Figure 14 (a), whereas the contracted graph of the graph shown in Figure 
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13(b) has been shown in Figure 14 (b). Since both the contracted graphs in Figure 14(a) and 

14(b) are different, so, they are not isomorphic. 

 

 

 

11.2 Identification of Structural Isomorphism by Characteristic Polynomial 

We know that the problem of testing structural isomorphismis equivalent to one of determining a 

permutation matrix P that transformsthe A into A∗for the two kinematic chains in question. For 

an n-link kinematic chain,there are n! possible ways of labeling the links and, therefore, n! 

possible permutationmatrices. Therefore, it is impractical to identify the permutation matrix by 

trial-anderror.Fortunately, there exists a convenient method for the determination of such 

apermutation matrix. 

A well-known theorem of matrix algebra states that the congruence relation givenby Equation 

(7) can exist only if the characteristic polynomials of the two adjacencymatrices, A and A∗, are 

equal to each other; that is, 

 



             IJMIE           Volume 3, Issue 10             ISSN: 2249-0558 
__________________________________________________________      

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
380 

October 
2013 

holds for all x, where x is a dummy variable and I is an identity matrix of the sameorder as A. We 

conclude that 

Theorem 1 

The adjacency matrices of two isomorphic kinematic chains possess the same 

characteristicpolynomial. 

The linkage characteristic polynomial for the graph shown in Figure10 is given by eq.(13) and 

the linkage characteristic polynomial for the graph shown in Figure 11 is given by eq.(14). 

 

 

Since p(x) = p∗(x), the two graphs are most likely isomorphic. 

The above theorem is a necessary, but not a sufficient conditionfor two kinematic chains to be 

isomorphic. Although this condition is not completelydiscriminatory, it can successfully 

distinguish the kinematic chains with up to eight links. Asthe number of links increases, 

however, the probability of failing to detect structuralisomorphism increases. Counter examples 

have been found where two nonisomorphickinematic chains share the same characteristic 

polynomial [14]. 

 

Figure 15 shows two (10, 13) nonisomorphic graphs sharing thecharacteristic polynomial: 

p(x) = x
10

− 13x
8
+ 53x

6
− 8x

5
− 82x

4
+ 26x

3
+ 39x

2
− 16x ------------------(15) 

Similarly, Figure 16 shows two (11, 14) nonisomorphic graphs sharing the 

characteristicpolynomial: 

p(x) = x
11

− 14x
9
+ 65x

7
–13 x

5
+ 112x

3
+ 32x       ---------------------------(16) 
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This method of identification needs the derivation of characteristic polynomials.Uicker and 

Raicu [17] presented a computer method for derivation of the coefficientsnumerically. Yan and 

Hall [18, 19] developed a set of rules for determination ofthe polynomials by inspection. Tsai 

[16] suggested the use of the random numbertechnique to improve the computational efficiency.  

Because the characteristic polynomial cannot fully identify structural isomorphisms,the method 

is often augmented by other techniques such as classification ofkinematic chains according to 

their contracted graphs. For example, the graph shownin Figure 15(a) belongs to the contracted 

graph shown in Figure 14 (a), whereas the one shown in Figure 15(b) belongs to the Figure 14 

(b) contracted graph. Therefore, these two graphs cannot be isomorphic although they share a 

common characteristic polynomial. Similarly, the graphs shown in Figure 16(a) and Figure 16(b) 

cannot be isomorphic because they belong to two different contracted graphs shown in Figure 

14(a) and Figure 14 (b) respectively. 

 

 

 

 

11.3 Identification of Structural Isomorphism by Optimum Code 
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Despite the extraordinary degree of discrimination, the method of characteristicpolynomial 

encounters difficulties in three respects. (1) The method is not decodable.(2) It is not a sufficient 

condition for identification of structural isomorphism.(3) The computational efficiency is poor. 

To overcome these difficulties, Ambekarand Agrawal [1, 2, 3] suggested a method of 

identification called the optimum code.In contrast to the characteristic polynomial method, the 

optimum code guarantees thedecodability and positive identification of structural isomorphism. 

The method involvesa technique for labeling the links of a kinematic chain such that a binary 

stringobtained by concatenating the upper triangular elements of the adjacency matrix rowby 

row, excluding the diagonal elements, is maximized. This is called the MAX code.To illustrate 

the concept, we consider the six-link Stephenson chain shown inFigure8 (a).The corresponding 

labeled graph is shown in Figure 8 (b). Let thelabeling of the vertices shown in Figure 8 (b) be 

denoted by an identity permutationa1= (1)(2)(3)(4)(5)(6). Then the adjacency matrix is given by 

eq. (17). 

 

 

Excluding the diagonal elements, there are 15 binary elements in the upper triangularadjacency 

matrix, namely 10011, 1000, 100, 11, and 0. Writing these elements insequence we obtain a 

binary string of 100111000100110, which can be convertedinto a decimal number as follows. 

1001110001001102 = 214 + 211 + 210 + 29 + 25 + 22 + 21 = 20006 . 

Figure 17(a) shows a different labeling of the vertices that corresponds to thepermutation a2 = 

(1)(245)(36). For this labeling, the adjacency matrix becomes eq. (18). 
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Therefore, the upper triangular elements ofA2 form a binary string of 111000010010011, which 

is equal to a decimal number of 28819.It can be shown that, among all possible labelings of the 

graph, the labeling shownin Figure 17(a) leads to a maximum number. We call the number 

28819 the MAXcode of the Stephenson chain. We note that several labelings of a graph may lead 

tothe same MAX code due to the existence of graph automorphisms.Alternately,we can also 

search for a labeling of the Stephenson chain that minimizesthe binary string of the upper 

triangular elements. We call the resulting decimalnumber the MIN code. Intuitively, for the 

permutation a3 = (15) (3) (246) shownin Figure 17(b), we obtain a minimum binary string of 

000110011101100, whichgives 3308 as the MIN code. 

Using the above method, the problem of testing structural isomorphism is convertedinto a 

problem of comparing the optimum codes of two kinematic chains in question.For an n-link 

kinematic chain, the method requires n! permutations to arrive at theoptimum code. Clearly, 

there is a need to develop a more efficient heuristic algorithmfor determination of the optimum 

code [1]. A poorly developed algorithm may leadto a local optimum and, therefore, may reduce 
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the robustness of the method. From thedefinition of the MAX code, we observe that the first few 

rows of the upper triangularadjacency matrix constitute the most significant bits of the code. 

Furthermore, ineach row, the closer an element is to the diagonal of the adjacency matrix, the 

morecontribution it makes to the binary code. Therefore, any efficient algorithm shouldaim at 

shifting as many 1s to the most significant bits of the binary code as possible.Further, the concept 

of a group of automorphisms can be employed to further reducethe number of permutations. 

 

11.4 Identification of Structural Isomorphism by Degree Code 

In this section we describe a heuristic algorithm called the degree code [15]. Recallthat the 

degree of a vertex is defined as the number of edges incident to it. From thekinematics point of 

view, the degree of a vertex represents the number of joints on alink. Hence, a vertex of degree 2 

denotes a binary link, a vertex of degree 3 representsa ternary link, and so on. In the degree code, 

the vertex degrees are used as a constraintfor labeling the links of a kinematic chain. Links of the 

same degrees are groupedtogether and the various groups of links are arranged in a descending 

order accordingto their vertex degree. While searching for an optimum code, permutations of the 

links are constrained within each group such that the degrees of all vertices are always keptin a 

descending order. This method not only preserves the advantages of the optimumcode, but also 

reduces the number of permutations needed for searching the optimum. 

For example, if the links of an n-link kinematic chain are divided into 3 groups havingp, q, and r 

number of links, respectively, where n = p + q + r, the total number ofpermutations reduces from 

n! top!q!r!. 

The procedure for finding the degree code of a kinematic chain can be summarizedas follows: 

1. Identify the degree of each vertex in the graph of a kinematic chain and arrangethe vertices of 

the same degree into groups. 

2. Renumber the vertices according to the descending order of vertex degrees. 

3. Permute the vertices of the same degree to get a new labeling of the graph.Similar vertices, if 

any, can be arranged in a subgroup to further reduce thenumber of permutations. 

4. For each permutation, calculate the decimal number of the binary string obtainedby 

concatenating, row-by-row, the upper-right triangular elements of thecorresponding adjacency 

matrix. 

5. The maximum number obtained from all possible permutations is defined asthe degree code. 
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For example, the degrees of vertices 1 through 6 of the graph shown in Figure 8(b)are 3, 2, 2, 3, 

2, and 2, respectively. Since there are two vertices of degree 3 and fourvertices of degree 2, the 

vertices are divided into two groups: (1, 4) and (2, 3, 5, 6).As a first attempt, we relabel the graph 

as shown in Figure 18(a) where integers 1and 2 are assigned to the two vertices of degree 3. 

Under the new labeling, the twogroups consist of (1, 2) and (3, 4, 5, 6). We notice that vertices 1 

and 2 are similar.Hence, there is no need to permute these two vertices. Similarly, there is no 

needto permute vertices 5 and 6. Following the above procedure, it can be shown thatamong all 

possible permutations, the permutation shown in Figure 18(b) produces amaximum number. The 

adjacency matrix is 

 

 

Therefore, the binary string is 011101101000001, which is equal to a degree codeof 15169. We 

note that the degree code is smaller than the MAX code, becausepermutations of the links for the 

degree code are confined within each group ofvertices of the same degree. 

Finally, wenotethat thedegreecodes for thegraphs showninFigures 15(a) and Figures 15(b) 

are28055807549442 and 28055872017416, respectively. Although the two graphs sharea 

common characteristic polynomial, their degree codes are unequivocally different. 

12. Illustrative examples 

12.1 Example 1:Symmetric Group of Three Elements 
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Let three elements, denoted by the integers 1, 2, and 3, be ordered in a reference 

sequence (1, 2, 3). We show that the following six permutations form a group: 

Element Permutation Cyclic Representation 

a1  (1, 2, 3) → (1, 2, 3)   (1)(2)(3) 

a2  (1, 2, 3) → (1, 3, 2)   (1)(23) 

a3  (1, 2, 3) → (2, 1, 3)   (12)(3) 

a4  (1, 2, 3) → (2, 3, 1)   (123) 

a5  a5 (1, 2, 3) → (3, 1, 2)  (132) 

a6  a6 (1, 2, 3) → (3, 2, 1)   (13)(2) 

 

Following the definition of group operation, we can construct a multiplication table: 

Following the definition of group operation, we can construct a multiplication table: 

 

We conclude that every product is an element of the group; the associative law holds; a1 is the 

identity element; a4 and a5 are mutually the inverse of each other; and every other element is its 

own inverse. 

12.2 Example 2:Group of Automorphisms  ofStephenson Chain 

Consider the Stephenson chain shown in Figure 8(a), where the six links are labeled from 1 to 6. 

The corresponding graph is shown in Figure 8(b). Let this labeling of the graph be the identity 

permutation, a1 = (1)(2)(3)(4)(5)(6). Figures 8(c) through e show three permutations of the 

labeling that can be denoted as a2 =(1)(2)(3)(4)(56), a3 =(14)(23)(5)(6), and a4 =(14)(23)(56), 

respectively. In the following we show that the above four labeled graphs form a group of 

automorphisms. 

Following the definition of group operation, we can construct a multiplication table: 

 

 a1  a2  a3  a4  

a1  a1  a2  a3  a4  
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a2  a2  a1  a4  a3  

a3  a3  a4  a1  a2  

a4 a4  a3  a2  a1  

 

We conclude that every product is an element of the group; the associative law holds; a1 is the 

identity element; and every element is its own inverse. Therefore,a1, a2, a3, and a4 form a group 

of automorphisms. 

Two vertices of a graph are said to be similar if they are contained in the same cycle of a 

permutation of a vertex-induced group of automorphisms. In the above example, vertices 1 and 4 

are similar. Vertices 5 and 6, and 2 and 3 are also similar. Similar vertices have the same vertex 

degrees and their adjacent vertices also have the same vertex degrees. In other words, similar 

vertices possess the same attributes. Automorphic graphs are by definition isomorphic. 

Analogously, two edges of a graph are said to be similar it they are contained in the same cycle 

of a permutation of an edge-induced group of automorphisms. 

 

13. Conclusions 

The basic concept of graph theory is essential for structural analysis and synthesis of 

mechanisms kinematic chains. The topological structure of a kinematic chain can be represented 

by kinematic graph easily with the help of graph theory. The Grubler equation for determination 

of dof does not consider the concept of redundant dof. Although, the redundant dof has no role in 

torque transfer from input to output link but the presion and accuracy of design depends upon it 

(see Table 1). There are many mechanisms (over-constrained mechanisms) those do not obey 

Grublercriterion.Several methods of identification of structural isomorphism among mechanisms 

kinematic chains like identification by- classification, characteristic polynomials, optimum code 

and degree code has been studied.These structural characteristics are extremely useful for the 

development of computer algorithms for systematic enumeration of mechanisms. It is suggested 

that a designer should use the concept of contracted graphs to determine the structural 

isomorphism as it is a reliable, easy to compute method. The study is extremely helpful for the 

U.G. /P.G. students, research scholars and designers in their early age of learning at the 

conceptual stage of design. 
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